

Thermochimica Acta 268 (1995) 37-43

thermochimica acta

Excess enthalpies for binary systems containing 2,4,6-trimethylpyridine and normal alkanes $(C_6H_{14}-C_{10}H_{22})$ at 298.15 K

H. Wilczura*, T. Kasprzycka-Guttman

Department of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteura 1, Poland Received 17 January 1995; accepted 27 April 1995

Abstract

The experimental data of excess enthalpies for binary systems formed by 2,4,6-trimethylpyridine and *n*-alkanes ($C_6H_{14}-C_{10}H_{22}$) at 298.15 K have been reported.

The results of the computation of $H^{E} = f(x)$ by the Prigogine-Flory-Patterson and Extended Real Associated Solution models are compared with the experimental values of H^{E} .

Keywords: Excess enthalpy; Extended Real Associated Solution model (ERAS); Normal alkanes; Prigogine-Flory-Patterson model (PFP); 2,4,6-Trimethylpyridine

1. Introduction

As an extension of our investigation of the intermolecular interactions in pure pyridine bases, the excess enthalpies $H^{\rm E} = f(x)$ for the binary systems of 2,4,6-trimethylpyridine with aliphatic hydrocarbons ($C_6H_{14}-C_{10}H_{22}$) at 298.15 K have been measured.

The binaries formed by 2, 4, 6-trimethylpyridine and normal alkanes are representatives of associated systems with the 2, 4, 6-trimethylpyridine as a self-associated component. There is information on the self-association of pyridine and its methyl derivatives in the literature [1-5]. However, the problem of self-association of the pyridine bases is very complicated and is not yet solved.

^{*} Corresponding author.

We have already reported [6–10] experimental results for $H^{E} = f(x)$ and their theoretical descriptions for pyridine, 2-, 3- and 4-methylpyridine, and 2, 4- and 2, 6-dimethylpyridine.

This paper reports experimental data for $H^E = f(x)$ and also the results of excess enthalpy representation for 2, 4, 6-trimethylpyridine + *n*-alkane binaries using two theoretical models of non-electrolyte solutions: the Prigogine-Flory-Patterson model [11-13] and the Extended Real Associated Solution model [14].

2. Experimental

The measurements of the excess enthalpies of mixing were carried out using the UNIPAN 600 flow microcalorimeter (Poland) with a separate dosage system [15]. The accuracy of the H^{E} value was $\pm 2 \text{ J mol}^{-1}$. All substances used for the investigations were thoroughly purified as described previously [16]. The final purities checked by GLC were better than 99.9% for aliphatic hydrocarbons and better than 99.6% for 2,4,6-trimethylpyridine.

3. Results and discussion

The experimental values of H^{E} are given in Table 1. All the results were fitted using the Redlich-Kister polynomial

$$H^{\mathrm{E}}(\mathrm{J}\,\mathrm{mol}^{-1}) = x_1(1-x_1)\sum_{i=1}^3 A_i(i-2x_1)^{i-1}$$

where x_1 is the mole fraction of 2,4,6-trimethylpyridine. The parameters A_i and the standard deviations δ are also given in Table 1.

For all the investigated binaries, the excess enthalpies are endothermic and the $H_{\text{max}}^{\text{E}}$ values are within the range 808.3–1043.2 J mol⁻¹. The H^{E} curves are symmetrical and the values of the excess enthalpies increase with the chain length of the hydrocarbon component.

A theoretical description of the experimental results has been made using two non-electrolyte solution models, the Prigogine-Flory-Patterson (PFP) [11-13] and the Extended Real Associated Solution (ERAS) [14].

The PFP model takes into account only the physical interactions with the excess properties of mixtures. The ERAS model considers the PFP physical contribution and also the chemical term H_{ch}^{E} which describes the contribution of association to the excess properties according to the Kretschmer-Wiebe model [17].

In the investigated systems, the chemical term reflects the self-association of 2,4,6-trimethylpyridine.

The PFP expression for excess enthalpy $H^{\rm E} = H_{\rm ph}^{\rm H}$, is given by

$$H^{\rm E} = (v_1^* x_1 + v_2^* x_2) \left[\frac{\varphi_1 p_1^*}{\tilde{v}_1} + \frac{\varphi_2 p_2^*}{\tilde{v}_2} - \frac{p_{\rm M}^*}{\tilde{v}_{\rm M}} \right]$$
(1)

Table 1

Experimental $H^{\rm E}$ data for 2,4,6-trimethylpyridine with normal alkanes (C₆H₁₄-C₁₀H₂₂) at 298.15 K: x_1 , mole fraction of 2,4,6-trimethylpyridine; A_i , coefficients of the Redlich-Kister polynomial; δ , standard deviation

<i>x</i> ₁	$H^{\mathbf{E}} \operatorname{\mathbf{J}mol}^{-1}$	<i>x</i> ₁	$H^{E} J mol^{-1}$	
	2, 4, 6-Tri	methylpyridine + C_6H_{14}		
0.1035	303.1	0.5600	788.0	
0 2032	531.8	0.6060	757.8	
0.2504	616 7	0.6540	717 2	
0.2004	601.6	0.0340	655.2	
0.3008	740.4	0.7033	655.2	
0.3490	740.4	0.7633	504.9	
0.4214	/88.2	0.8115	475.1	
0.4680	805.0	0.8814	323.6	
0.5117	808.3			
	$A_1 = 3221.3$ $A_2 = -150$	$A_3 = -61.7 \qquad \delta = 2.4$		
	2, 4 ,6-Tri	nethylpyridine + $C_7 H_{16}$		
0.1030	322.6	0.5524	919.6	
0.2056	592.0	0.6129	890.4	
0.2497	682.4	0.6489	858.4	
0 2940	760.5	0.7008	786.4	
0.2540	839.6	0.7504	7126	
0.3303	804.0	0.7504	(16.0	
0.3928	880.9	0.7989	616.0	
0.4475	926.5	0.9017	345.6	
0.4971	939.0	0.9502	185.7	
	$A_1 = 3775.9$ $A_2 = 155.4$	4 $A_3 = -53.1$ $\delta = 5.5$		
	2, 4, 6-Tri	methylpyridine + C_8H_{18}		
0.1112	361.8	0.5544	956.1	
0.2131	629.1	0.6089	924.1	
0.2502	708.4	0.6452	891.6	
0.3026	804.6	0.7024	813.4	
0 3592	890.1	0.7498	735.8	
0.4088	938.8	0.7970	634.9	
0.4000	956.5	0.9990	366 4	
0.4990	971.7	0.8780	500.4	
	$A_1 = 3880.1$ $A_2 = 126.1$	$A_3 = -115.5$ $\delta = 5.1$		
	2, 4, 6-Tri	methylpyridine $+ C_9 H_{20}$		
0.1207	424.8	0.5424	1007.7	
0.2019	646.7	0 5949	981.3	
0.2506	754.8	0.6458	943.8	
0.2000	850.5	0.6490	867.6	
0.3019	030.3	0.0991	790.2	
0.3383	935.3	0.7494	(70.2	
0.4178	990.7	0.7959	6/9.3	
0.4551	1008.7	0.8845	443.6	
0.5053	1017.3	0.9249	307.8	
	$A_1 = 4063.3$ $A_2 = 136.$	$A_3 = 153.0 \qquad \delta = 6.0$		
	2, 4, 6-Trin	nethylpyridine + $C_{10}H_{22}$		
0.1289	450.7	0.5482	1033.7	
0.2019	669.3	0.5984	1012.2	
0.2487	769.1	0.6470	967.3	
0.3032	873.2	0.6978	905.6	
0 3425	930 4	0.7503	810.7	
0.5725	750. 4	0.7505	010.7	

x ₁	$H^{\rm E} {\rm J} {\rm mol}^{-1}$	<i>x</i> ₁	$H^{\rm E}$ J mol ⁻¹
0.3940	978.4	0.8021	701.2
0.4517	1025.8	0.8986	401.3
0.5127	1043.2		
	$A_1 = 4163.9$ $A_2 = 218.7$	$A_3 = 211.1$ $\delta = 5.7$	

Table 1 (Continued)

where $p_{\rm M}^*$ and $\tilde{v}_{\rm M}$ denote the characteristic pressure of the mixture and the reduced volume of the mixture respectively. The characteristic pressure of the mixture is given by

$$p_{\rm M}^* = \varphi_1 p_1^* + \varphi_2 p_2^* - \varphi_1 \Theta_2 \chi_{12} \tag{2}$$

where χ_{12} is the interaction energy parameter and Θ_2 the surface fraction

$$\Theta_2 = \frac{\varphi_2 s_2}{\varphi_1 s_1 + \varphi_2 s_2} \tag{3}$$

with s being the molecular surface-to-volume ratio, and the hard core volume fraction given by

$$\varphi_1 = \frac{x_1 v_1^*}{x_1 v_1^* + x_2 v_2^*} \tag{4}$$

The remaining symbols are: v_i^* , hard core volumes; p_i^* , characteristic pressures; and \tilde{v}_i , reduced volumes, all related to the components (i = 1, 2). The ERAS expression for excess enthalpy $H^E = H_{ph}^E + H_{ch}^E$ is

$$H^{\mathrm{E}} = H^{\mathrm{E}}_{\mathrm{ph}} + K\Delta h^{*} x_{1} (\Theta_{1} - \Theta_{1}^{0}) - x_{1} \frac{p_{\mathrm{M}}^{*}}{\tilde{v}_{\mathrm{M}}} K\Delta \vartheta^{*} (\Theta_{1} - \Theta_{1}^{0})$$
(5)

where the main parameters of association are K, the association constant, and Δh^* and $\Delta \vartheta^*$, the enthalpy and volume of formation of the hydrogen bond respectively.

The remaining parameters of the associated component, marked with subscript "1", take the form

$$p_1^* = \frac{\alpha - \alpha^*}{K - \alpha^* \frac{\Delta \vartheta^*}{\Delta h^*} T} T(\tilde{v}_1)^2$$
(6)

where α is the thermal expansion coefficient and α^* is a contribution to α arising from association effects

$$\alpha^* = \frac{\Delta \vartheta^*}{v_{1m}^*} \frac{\Delta h^*}{R T^2} \frac{1}{2K} (4K+1)^{0.5} - 2K(4K+1)^{0.5}$$
(7)

$$v_1^* = v_{1\mathfrak{m}}^* + \Delta \vartheta^* K \Theta_1 \tag{8}$$

$$\varphi_1 = \frac{\Theta_1}{\left(1 - K\Theta_1\right)^2} \tag{9}$$

with v_{1m}^* the characteristic volume of the monomer species and their volume fraction being

$$\Theta_1 = \frac{2K\phi_1 + 1 - (4K\phi_1 + 1)}{2K^2\phi_1} \tag{10}$$

where ϕ_1 is the analytical volume fraction of the associated component

$$\phi_1 = \frac{x_1 v_1}{x_1 v_1 + x_2 v_2} \tag{11}$$

expressed by molar volumes of the components v_1 and v_2 .

In both the PFP and ERAS calculations, the reduced and characteristic quantities were estimated using Flory's reduced equation of state [13] from the pure component properties, which are given in Table 2.

The self-association parameters of 2,4,6-trimethylpyridine have been computed using the relationships reported earlier [8]. Mesitylene was choosen as the homomorphic substance. Values of these were the following: the thermodynamic association constant $K_{298.15} = 2.2$; the enthalpy of association $\Delta h^* = -12889 \text{ J mol}^{-1}$; the volume of association $\Delta 9^* = -6.51 \text{ cm}^3 \text{ mol}^{-1}$.

The results of H^E calculation according to the PFP and ERAS models are compared with the experimental data in Figs. 1 and 2 for the choosen systems.

In both of these models, the only adjustable parameter is the interaction energy parameter χ_{12} . Its values, together with the standard deviations $\delta(H^E)$, are given in Table 3.

For the mixtures of 2,4,6-trimethylpyridine with *n*-alkanes, the PFP model gives a better description of $H^E = f(x)$ than the ERAS model. The Kretschmer-Wiebe model [17] of the continuous association of 2,4,6-trimethylpyridine included in the ERAS model is, in our opinion, unsatisfactory for reproducing its behaviour in mixtures with

Table 2

Properties of pure components: density d, characteristic pressure p^* obtained from the Flory formalism, isobaric thermal expansivity α , isothermal compressibility κ for *n*-alkanes and 2, 4, 6-trimethylpyridine at 298.15 K, and the molecular surface-to volume-ratio s

Component	$d/g\mathrm{cm}^{-3}$	$p^*/J \mathrm{cm}^{-3}$	α/kK^{-1}	κ/TPa^{-1}	s/Å⁻1
 С.Н.,	0.6550	423.0	1.3910	1703.9	1.04
$C_{7}H_{16}$	0.6793	432.0	1.2530	1460.6	1.02
C_8H_{18}	0.6983	439.0	1.1650	1302.4	0.99
C ₀ H ₂₀	0.7139	443.0	1.09	1175.4	0.97
$C_{10}\dot{H}_{22}$	0.7263	448.0	1.05	1109.6	0.96
Ref.	[18]	[19]	[18]	[20]	[19]
2, 4, 6-Trimethyl- pyridine	0.9103	606.6	1.0094	774.7	0.85
Ref.	[16]	[16]	[16]	а	[16]

^a Authors own data, estimated by group contribution method.

Fig. 1. Excess enthalpy for the 2,4,6-collidine (1) + *n*-hexane system at 298.15 K: \bullet , experimental points; —, PFP model; — —, ERAS model.

Fig. 2. Excess enthalpy for the 2,4,6-collidine (1) + *n*-decane system at 298.15 K: \bullet , experimental points; —, PFP model; — —, ERAS model.

n-alkanes. This remark corresponds with discussion [21] on intermolecular interactions in pure pyridine bases, suggesting that non-specific intermolecular interactions are predominant in pure pyridine and its methyl derivatives, as well as in their mixtures with aliphatic hydrocarbons.

System	PFP		ERAS		
	χ_{12}/J cm ⁻³	$\delta(H^{\rm E})/{ m Jmol^{-1}}$	$\chi_{12}/J cm^{-3}$	$\delta(H^{\rm E})/{ m Jmol^{-1}}$	
2,4,6-Trimethy pyridine	l-	<u> </u>			
$+C_{c}H_{1}$	27.8	26.0	10.1	92.8	
C ₂ H ₁₆	30.1	21.2	11.6	106.8	
C H	29.8	36.7	9.9	99.2	
C _o H ₂₀	30.2	49.7	9.4	89.4	
$C_{10}H_{23}$	29.9	58.7	8.2	90.2	

Table 3 Values of parameters $\chi_{1,2}$ in the PFP and ERAS calculations with standard errors $\delta(H^{\rm E})$ respectively

References

- [1] Y. Yukawa, Handbook of Organic Structural Analysis, W. A. Benjamin Inc., 1965.
- [2] I. Wawer and S. Warycha, Pol. J. Chem., 59 (1985) 565.
- [3] R. Smets and P. Huyskens, Bull. Soc. Chim. Fr., (5-6) (1978) 173.
- [4] S. Warycha and J. C. Rytting, J. Sol. Chem., 13(8) (1984) 585.
- [5] S. Warycha and I. Wawer, Adv. Mol. Relaxation and Interaction Processes, 14 (1979) 29.
- [6] T. Kasprzycka-Guttman and H. Wilczura, Thermochim. Acta, 158 (1990) 1.
- [7] T. Kasprzycka-Guttman, H. Wilczura and A. Myslinski, J. Therm. Anal., 38 (1992) 1357.
- [8] T. Kasprzycka-Guttman and H. Wilczura, Thermochim. Acta, 198 (1992) 405.
- [9] T. Kasprzycka-Guttman and H. Wilczura, Thermochim. Acta, 184 (1991) 321.
- [10] T. Kasprzycka-Guttman and H. Wilczura, Thermochim. Acta, 209 (1992) 25.
- [11] E. Eichinger and P. J. Flory, Trans. Faraday Soc., 64 (1968) 2035.
- [12] P. J. Flory, J. Am. Chem. Soc., 87 (1965) 1833.
- [13] P. J. Flory, R. A. Orwoll and A. Vrij, J. Am. Chem. Soc., 86 (1964) 3507; 86 (1964) 3515.
- [14] A. Heintz, Ber. Bunsenges. Phys. Chem., 89 (1985) 172.
- [15] H. Wilczura, T. Kasprzycka-Guttman and S. Randzio, Bull. Pol. Acad. Sci. Ser. Chim., 34 (11–12) (1986) 483.
- [16] H. Wilczura, T. Kasprzycka-Guttman and E. Megiel, Thermochim. Acta, 247 (1994) 237.
- [17] C. B. Kretschmer and R. Wiebe, J. Chem. Phys., 22 (1954) 1697.
- [18] R. A. Orwoll and P. J. Flory, J. Am. Chem. Soc., 89 (1967) 6814.
- [19] M. Costas and D. Patterson, J. Sol. Chem., 11 (11) (1982) 807.
- [20] A. Treszczanowicz, D. Patterson, G. Benson and T. Kasprzycka-Guttman, Fluid Phase Equilibria, 50 (1989) 235.
- [21] H. Wilczura, T. Kasprzycka-Guttman, M. Jarosz-Jarszewska and A. Myslinski, J. Therm. Anal. in press.